Btrfs - btrfs

Btrfs is a local file system based on the COW principle. COW means that data is stored to a different block after it has been modified instead of overwriting the existing data, reducing the risk of data corruption. Unlike other file systems, Btrfs is extent-based, which means that it stores data in contiguous areas of memory.

In addition to basic file system features, Btrfs offers RAID and volume management, pooling, snapshots, checksums, compression and other features.

To use Btrfs, make sure you have btrfs-progs installed on your machine.

Terminology

A Btrfs file system can have subvolumes, which are named binary subtrees of the main tree of the file system with their own independent file and directory hierarchy. A Btrfs snapshot is a special type of subvolume that captures a specific state of another subvolume. Snapshots can be read-write or read-only.

btrfs driver in Incus

The btrfs driver in Incus uses a subvolume per instance, image and snapshot. When creating a new entity (for example, launching a new instance), it creates a Btrfs snapshot.

Btrfs doesn’t natively support storing block devices. Therefore, when using Btrfs for VMs, Incus creates a big file on disk to store the VM. This approach is not very efficient and might cause issues when creating snapshots.

Btrfs can be used as a storage backend inside a container in a nested Incus environment. In this case, the parent container itself must use Btrfs. Note, however, that the nested Incus setup does not inherit the Btrfs quotas from the parent (see Quotas below).

Quotas

Btrfs supports storage quotas via qgroups. Btrfs qgroups are hierarchical, but new subvolumes will not automatically be added to the qgroups of their parent subvolumes. This means that users can trivially escape any quotas that are set. Therefore, if strict quotas are needed, you should consider using a different storage driver (for example, ZFS with refquota or LVM with Btrfs on top).

When using quotas, you must take into account that Btrfs extents are immutable. When blocks are written, they end up in new extents. The old extents remain until all their data is dereferenced or rewritten. This means that a quota can be reached even if the total amount of space used by the current files in the subvolume is smaller than the quota.

Note

This issue is seen most often when using VMs on Btrfs, due to the random I/O nature of using raw disk image files on top of a Btrfs subvolume.

Therefore, you should never use VMs with Btrfs storage pools.

If you really need to use VMs with Btrfs storage pools, set the instance root disk’s size.state property to twice the size of the root disk’s size. This configuration allows all blocks in the disk image file to be rewritten without reaching the qgroup quota. The btrfs.mount_options=compress-force storage pool option can also avoid this scenario, because a side effect of enabling compression is to reduce the maximum extent size such that block rewrites don’t cause as much storage to be double-tracked. However, this is a storage pool option, and it therefore affects all volumes on the pool.

Configuration options

The following configuration options are available for storage pools that use the btrfs driver and for storage volumes in these pools.

Storage pool configuration

Key

Type

Default

Description

btrfs.mount_options

string

user_subvol_rm_allowed

Mount options for block devices

size

string

auto (20% of free disk space, >= 5 GiB and <= 30 GiB)

Size of the storage pool when creating loop-based pools (in bytes, suffixes supported, can be increased to grow storage pool)

source

string

-

Path to an existing block device, loop file or Btrfs subvolume

source.wipe

bool

false

Wipe the block device specified in source prior to creating the storage pool

Tip

In addition to these configurations, you can also set default values for the storage volume configurations. See Configure default values for storage volumes.

Storage volume configuration

Key

Type

Condition

Default

Description

initial.gid

int

custom volume with content type filesystem

same as volume.initial.uid or 0

GID of the volume owner in the instance

initial.mode

int

custom volume with content type filesystem

same as volume.initial.mode or 711

Mode of the volume in the instance

initial.uid

int

custom volume with content type filesystem

same as volume.initial.gid or 0

UID of the volume owner in the instance

security.shared

bool

custom block volume

same as volume.security.shared or false

Enable sharing the volume across multiple instances

security.shifted

bool

custom volume

same as volume.security.shifted or false

Enable ID shifting overlay (allows attach by multiple isolated instances)

security.unmapped

bool

custom volume

same as volume.security.unmapped or false

Disable ID mapping for the volume

size

string

appropriate driver

same as volume.size

Size/quota of the storage volume

snapshots.expiry

string

custom volume

same as volume.snapshots.expiry

Controls when snapshots are to be deleted (expects an expression like 1M 2H 3d 4w 5m 6y)

snapshots.pattern

string

custom volume

same as volume.snapshots.pattern or snap%d

Pongo2 template string that represents the snapshot name (used for scheduled snapshots and unnamed snapshots) [1]

snapshots.schedule

string

custom volume

same as volume.snapshots.schedule

Cron expression (<minute> <hour> <dom> <month> <dow>), a comma-separated list of schedule aliases (@hourly, @daily, @midnight, @weekly, @monthly, @annually, @yearly), or empty to disable automatic snapshots (the default)

Storage bucket configuration

To enable storage buckets for local storage pool drivers and allow applications to access the buckets via the S3 protocol, you must configure the core.storage_buckets_address server setting.

Key

Type

Condition

Default

Description

size

string

appropriate driver

same as volume.size

Size/quota of the storage bucket